Skip to content
Register Sign in Wishlist

Why DNA?
From DNA Sequence to Biological Complexity

  • Author: Andrew Travers, MRC Laboratory of Molecular Biology, Cambridge
  • Date Published: February 2022
  • availability: In stock
  • format: Paperback
  • isbn: 9781107697522

Paperback

Add to wishlist

Other available formats:
Hardback, eBook


Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Information is central to the evolution of biological complexity, a physical system relying on a continuous supply of energy. Biology provides superb examples of the consequent Darwinian selection of mechanisms for efficient energy utilisation. Genetic information, underpinned by the Watson-Crick base-pairing rules is largely encoded by DNA, a molecule uniquely adapted to its roles in information storage and utilisation.This volume addresses two fundamental questions. Firstly, what properties of the molecule have enabled it to become the predominant genetic material in the biological world today and secondly, to what extent have the informational properties of the molecule contributed to the expansion of biological diversity and the stability of ecosystems. The author argues that bringing these two seemingly unrelated topics together enables Schrödinger's What is Life?, published before the structure of DNA was known, to be revisited and his ideas examined in the context of our current biological understanding.

    • A modern interpretation of the classic Schrödinger's What is Life?, extending Schrödinger's physical arguments to the modern understanding of DNA-based information systems
    • Explains why DNA is the predominant vehicle for genetic information vehicle how the DNA sequence contains both analogue and digital information
    • Describes how increases in DNA-encoded information, and the mechanisms that enable them, drive increases in biological complexity
    • Presents different perspectives on the evolution of biological complexity, distinguishing between genetically acquired information (DNA) and culturally acquired information
    Read more

    Reviews & endorsements

    'The essence of the book is in its title. The DNA structures and topology are described so clearly that the reader perceives these intricacies as pure evolutionary elegance, and understands WHY it is only in its balance of stability and agility that life could have started its journey. This book explains how DNA has become the fascinating prism, made of a fabric of complexity and information, into which the living reflects itself. My opinion is passionate because I have been thinking about the same problems for decades, and here I find many of the answers. Especially: what makes DNA so unique? It is a text that I keep reading over again.' Ernesto Di Mauro, IBPM, National Research Council, Rome

    'In What Is Life? Schrödinger conjectured that, in animate matter, order is derived from order, foreshadowing the discovery of DNA structure. Why DNA? is about this molecule and its dual information content - in linear genetic code and in thermodynamics of three-dimensional DNA structures. It addresses how DNA's intrinsic order led to complex, highly ordered living organisms, in a world that strives towards disorder. Why would DNA supplant RNA in carrying hereditary information during biological evolution? Why did multicellular organisms emerge, since natural selection favours the fittest, such as simple bacteria? What is complexity, and what has it to do with Bayesian logic? How do complexity, information and energy interrelate? This is a succinct discourse on Schrödinger's question, expanding from molecular interactions and genome cooperation to ecological systems and societal evolution. A must-read for biology scholars, and anyone interested in life's origins, biological evolution and the interface of biology and physics.' Georgi Muskhelishvili, Agricultural University of Georgia, Tbilisi

    'This is a welcome, fresh discussion of DNA as a complex biochemical resource beyond genetic functions. … Highly recommended.' D. L. Beach, Choice

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: February 2022
    • format: Paperback
    • isbn: 9781107697522
    • length: 222 pages
    • dimensions: 228 x 152 x 11 mm
    • weight: 0.4kg
    • availability: In stock
  • Table of Contents

    Acknowledgements
    Preface
    1. The perennial question
    2. The nature of information – information, complexity and entropy
    3. DNA – the molecule
    4. The evolution of biological complexity
    5. Cooperating genomes
    6. DNA, information and complexity
    7. Origins
    8. The complexity of societies
    9. Why DNA – and not RNA?
    General reading and bibliography.

  • Author

    Andrew Travers, MRC Laboratory of Molecular Biology, Cambridge
    Andrew Travers is an Emeritus Scientist at the Medical Research Council Laboratory of Molecular Biology (MRC LMB) and a Visiting Scientist in the Department of Biochemistry at the University of Cambridge. His research focuses on the use of the genetics and biochemistry of bacteria and Drosophila to study the mechanisms of chromatin folding and unfolding. He started his academic career at the MRC LMB before spending two years as a post-doc in Jim Watson's lab at Harvard University, where he co-discovered the first of the RNA polymerase sigma factors.

Read the Blog post by Andrew Travers

Nature's Wars

Related Books

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email [email protected]

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon
×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×